Covering the Large Spectrum and Generalized Riesz Products

نویسنده

  • James R. Lee
چکیده

Chang’s Lemma is a widely employed result in additive combinatorics. It gives optimal bounds on the dimension of the large spectrum of probability distributions on nite abelian groups. In this note, we show how Chang’s Lemma and a powerful variant due to Bloom both follow easily from an approximation theorem for probability measures in terms of generalized Riesz products. The latter result involves no algebraic structure. The proofs are correspondingly elementary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heuristic and exact algorithms for Generalized Bin Covering Problem

In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.

متن کامل

GENERALIZED RIESZ PRODUCTS ON THE BOHR COMPACTIFICATION OF Rp ̊q

We study a class of generalized Riesz products connected to the spectral type of some class of rank one flows on R. Applying a Central Limit Theorem of Kac, we exhibit a large class of singular generalized Riesz products on the Bohr compactification of R. Moreover, we discuss the problem of the flat polynomials in this setting. Dedicated to Professors Jean-Paul Thouvenot and Bernard Host. AMS S...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

A characterization of L-dual frames and L-dual Riesz bases

This paper is an investigation of $L$-dual frames with respect to a function-valued inner product, the so called $L$-bracket product on $L^{2}(G)$, where G is a locally compact abelian group with a uniform lattice $L$. We show that several well known theorems for dual frames and dual Riesz bases in a Hilbert space remain valid for $L$-dual frames and $L$-dual Riesz bases in $L^{2}(G)$.

متن کامل

A Family of Generalized Riesz Products

Generalized Riesz products similar to the type which arise as the spectral measure for a rank-one transformation are studied. A condition for the mutual singularity of two such measures is given. As an application, a probability space of transformations is presented in which almost all transformations are singular with respect to Lebesgue measure. AMS Subject Classification: Primary 28D03; Seco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2017